
Habs Labs

INTELLIGENCE-LED TESTING

SE Labs tested BlackBerry Protect and Optics against a range of hacking attacks designed to compromise systems and penetrate target networks in the same way as criminals and other attackers breach systems and networks.

Full chains of attack were used, meaning that testers behaved as real attackers, probing targets using a variety of tools, techniques and vectors before attempting to gain lower-level and more powerful access. Finally, the testers/ attackers attempted to complete their missions, which might include stealing information, damaging systems and connecting to other systems on the network.

MANAGEMENT

Chief Executive Officer Simon Edwards
Chief Operations Officer Marc Briggs
Chief Human Resources Officer Magdalena Jurenko
Chief Technical Officer Stefan Dumitrascu

TESTING TEAM

Nikki Albesa
Zaynab Bawa
Thomas Bean
Solandra Brewster
Rory Brown
Liam Fisher
Gia Gorbold
Jeremiah Morgan
Joseph Pike

Dave Togner
Dimitrios Tsarouchas
Stephen Withey
Liangyi Zhen

IT SUPPORT

Danny King-Smith Chris Short

PUBLICATION

Sara Claridge Colin Mackleworth

Website selabs.uk Twitter @SELabsUK Email info@SELabs.uk

LinkedIn www.linkedin.com/company/se-labs/

Blog blog.selabs.uk

Phone +44 (0)203 875 5000

Post SE Labs Ltd,

55A High Street, Wimbledon, SW19 5BA, UK

SE Labs is ISO/IEC 27001 : 2013 certified and BS EN ISO 9001 : 2015 certified for The Provision

of IT Security Product Testing.

SE Labs is a member of the Microsoft Virus Information Alliance (VIA); the Anti-Malware Testing Standards Organization (AMTSO); and the Messaging, Malware and Mobile Anti-Abuse Working Group (M3AAWG).

© 2021 SE Labs Ltd

CONTENTS

Introduction	04
Executive Summary	05
Breach Response Award	05
1. How We Tested	06
Threat Responses	07
Hackers vs. Targets	09
2. Total Accuracy Ratings	10
3. Response Details	1
4. Threat Intelligence	13
FIN7 & Carbanak	13
FIN4	14
FIN10	15
Silence	16
5. Legitimate Software Rating	17
6. Conclusions	18
Appendicies	19
Appendix A: Terms Used	19
Appendix B: FAQs	19
Appendix C: Attack Details	20

Document version 1.0 Written: 15th July 2021

INTRODUCTION

Preventive Endpoint Protection

Would you rather your security stopped the bad guys before they walk through the door?

There are many opportunities to spot and stop attackers. Products can detect them when attackers send phishing emails to targets. Or later, when other emails contain links to malicious code. Some kick into action when malware enters the system. Others sit up and notice when the attackers exhibit bad behaviour on the network.

Regardless of which stages your security takes effect, you probably want it to detect and prevent before the breach runs to its conclusion in the press.

Our Breach Response test is unique, in that we test products by running a full attack. We follow every step of a breach attempt to ensure that the test is as realistic as possible. This is important because different products can detect and prevent threats differently.

Ultimately you want your chosen security product to prevent a breach one way or another, but it's more ideal to stop a threat early, rather than watch as it wreaks havoc before stopping it and trying to clean up.

Some products are designed solely to watch and inform, while others can also get involved and remove threats either as soon as they

appear or after they start causing damage. For the 'watchers' we run the Breach Response test in Detection mode. For 'stoppers' like **BlackBerry Protect** we can demonstrate effectiveness by testing in Protection Mode.

In this report we look at how BlackBerry Protect handled full breach attempts. At which stages did it detect and protect? And did it allow business as usual, or mis-handle legitimate applications?

Understanding the capabilities of different security products is always better achieved before you need to use them in a live scenario. SE Labs' Breach Response test reports help you assess which are the best for your own organisation.

If you spot a detail in this report that you don't understand, or would like to discuss, please contact us via our Twitter or Facebook accounts. SE Labs uses current threat intelligence to make our tests as realistic as possible. To learn more about how we test, how we define 'threat intelligence' and how we use it to improve our tests please visit our website and follow us on Twitter.

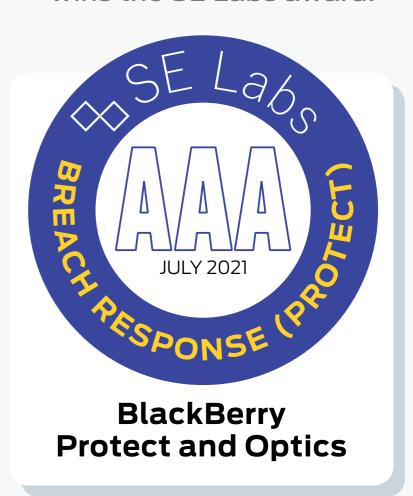
Executive Summary

BlackBerry Protect and Optics was tested against a range of hacking attacks designed to compromise systems and penetrate target networks in the same way as criminals and other attackers breach systems and networks.

We examined its abilities to:

- Detect highly targeted attacks
- Protect against the actions of highly targeted attacks
- Provide remediation to damage and other risks posed by the threats
- Handle legitimate applications and other objects

Legitimate files were used alongside the threats to measure any false positive detections or other sub-optimum interactions.


BlackBerry Protect and Optics performed admirably, providing complete detection and protection coverage against all attacks, while allowing all legitimate applications to operate. This is an exceptional result in a challenging test.

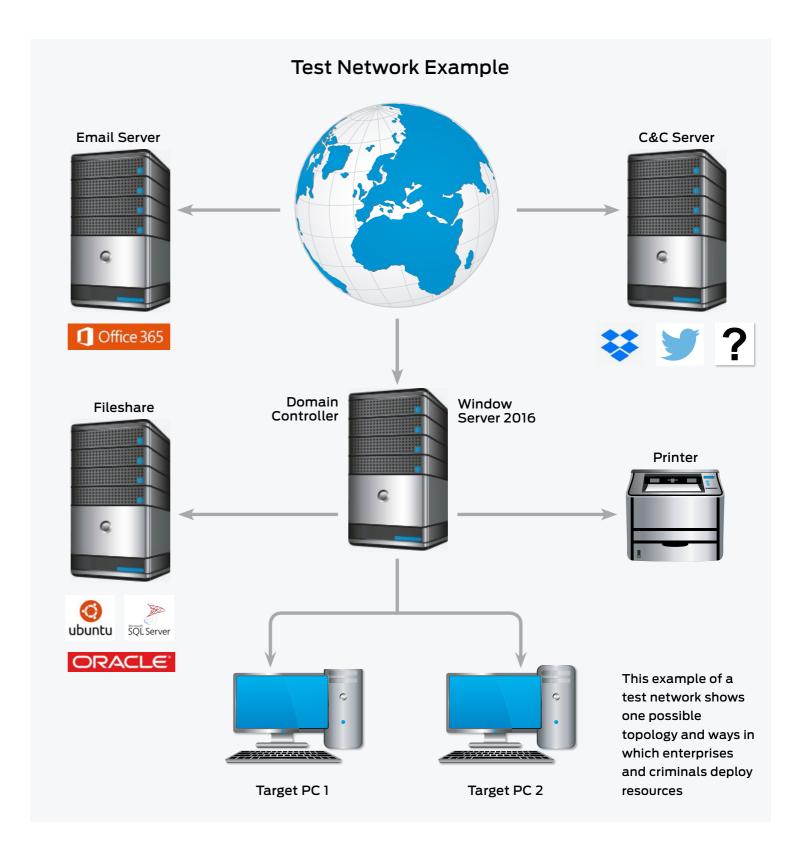
Executive Summary									
Product Tested	Protection Accuracy (%)	Legitimate Accuracy Rating (%)	Total Accuracy Rating (%)						
BlackBerry Protect and Optics	92%	100%	95%						

Green highlighting shows that the product was very accurate, scoring 85% or more for Total Accuracy. Yellow means between 75 and 85, while red is for scores of less than 75%.

Breach Response Award

The following product wins the SE Labs award:

1. How we Tested


Testers can't assume that products will work a certain way, so running a realistic breach response test means setting up real networks and hacking them in the same way that real adversaries behave.

In the diagram on the right you will see an example network that contains workstations, some basic infrastructure such as file servers and a domain controller, as well as cloud-based email and a malicious command and control (C&C) server, which may be a conventional computer or a service such as Dropbox, Twitter, Slack or something else more imaginative.

As you will see in the Threat Responses section on page 7, attackers often jump from one compromised system to another in so-called 'lateral movement'. To allow products to detect this type of behaviour the network needs to be built realistically, with systems available, vulnerable and worth compromising.

It is possible to compromise devices such as enterprise printers and other so-called 'IoT' (internet of things) machines, which is why we've included a representative printer in the diagram.

The techniques that we choose for each test case are largely dictated by the real-world behaviour of online criminals. We observe their tactics and replicate what they do in this test. To see more details about how the specific attackers behaved, and how we copied them, see Hackers vs. Targets on page 9 and, for a really detailed drill down on the details, 4. Threat Intelligence on pages 13 to 16 and Appendix C: Attack Details.

Threat Responses

Full Attack Chain: Testing every layer of detection and protection

Attackers start from a certain point and don't stop until they have either achieved their goal or have reached the end of their resources (which could be a deadline or the limit of their abilities). This means, in a test, the tester needs to begin the attack from a realistic first position, such as sending a phishing email or setting up an infected website, and moving through many of the likely steps leading to actually stealing data or causing some other form of damage to the network.

If the test starts too far into the attack chain, such as executing malware on an endpoint, then many products will be denied opportunities to use the full extent of their protection and detection

abilities. If the test concludes before any 'useful' damage or theft has been achieved, then similarly the product may be denied a chance to demonstrate its abilities in behavioural detection and so on.

Attack stages

The illustration (right) shows some typical stages of an attack. In a test each of these should be attempted to determine the security solution's effectiveness. This test's results record detection and protection for each of these stages.

We measure how a product responds to the first stages of the attack with a detection and/or protection rating. Sometimes products allow threats to run but detect them. Other times they might allow the threat to run briefly before neutralising it. Ideally they detect and block the threat before it has a chance to run. Products may delete threats or automatically contains them in a 'quarantine' or other safe holding mechanism for later analysis.

Should the initial attack phase succeed we then measure post-exploitation stages, which are represented by steps two through to seven below. We broadly categorise these stages as: Access (step 2); Action (step 3); Escalation (step 4); and Post-escalation (steps 5-7).

In figure 1. you can see a typical attack running from start to end, through various 'hacking' activities.

This can be classified as a fully successful breach.

ATTACK CHAIN STAGES

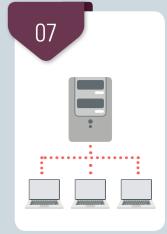


Figure 1. A typical attack starts with an initial contact and progresses through various stages, including reconnaissance, stealing data and causing damage.

In figure 2. a product or service has interfered with the attack, allowing it to succeed only as far as stage 3, after which it was detected and neutralised. The attacker was unable to progress through stages 4 and onwards.

It is possible for an attack to run in a different order with, for example, the attacker attempting to connect to other systems without needing to escalate privileges. However, it is common for password theft (see step 5) to occur before using stolen credentials to move further through the network.

It is also possible that attackers will not cause noticeable damage during an attack. It may be that their goal is persistent presence on the systems to monitor for activities, slowly steal information and other more subtle missions.

In figure 3. the attacker has managed to progress as far as stage five. This means that the system has been seriously compromised. The attacker has a high level of access and has stolen passwords. However, attempts to exfiltrate data from the target were blocked, as were attempts to damage the system.

ATTACK CHAIN: How Hackers Progress

Figure 2. This attack was initially successful but only able to progress as far as the reconnaissance phase.

Figure 3. A more successful attack manages to steal passwords but wholesale data theft and destruction was blocked.

EMAIL SECURITY SERVICES PROTECTION

Which services from well-known vendors are the most effective?

NOW! selabs.uk/essp2020

Hackers vs. Targets

When testing services against targeted attacks it is important to ensure that the attacks used are relevant. Anyone can run an attack randomly against someone else. It is the security vendor's challenge to identify common attack types and to protect against them. As testers, we need to generate threats that in some way relate to the real world.

All of the attacks used in this test are valid ways to compromise an organisation. Without any security in place, all would succeed in attacking the target.

Outcomes would include systems infected with ransomware, remote access to networks and data theft.

But we didn't just sit down and brainstorm how we would attack different companies. Instead we used current threat intelligence to look at what the bad guys have been doing over the last few years and copied them quite closely. This way we can test the services' abilities to handle similar threats to those faced by global governments, financial institutions and national infrastructure.

The graphic on this page shows a summary of the attack groups that inspired the targeted attacks used in this test. If a service was able to detect and protect against these then there's a good chance they are on track to blocking similar attacks in the real world. If they fail, then you might take their bold marketing claims about defeating hackers with a pinch of salt.

For more details about each APT group please see 4. Threat Intelligence on page 13.

Hackers vs. Targets										
Attacker/ APT Group	Method	Target	Details							
FIN7 & Carbanak	w <u>S</u>		Documents containing hidden links to scripts							
FIN4	X W	\$	Man-in-the-middle spear phishing							
FIN10			Spear phishing emails combined with public attack tools							
Silence	X W		Documents containing scripts, links and exploits							

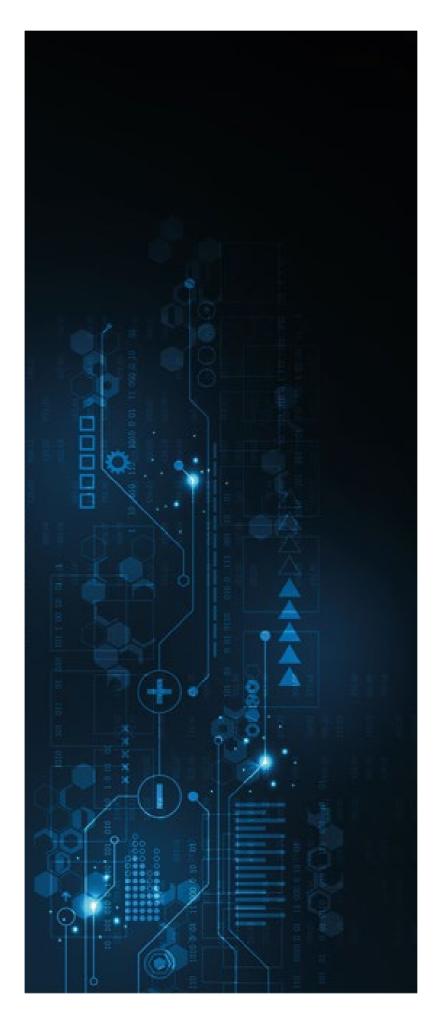
2. Total Accuracy Ratings

Judging the effectiveness of an endpoint security product is a subtle art, and many factors are at play when assessing how well it performs. To make things easier we've combined all the different results from this report into one easy-to-understand chart.

The chart below takes into account not only the product's ability to detect and protect against threats, but also its handling of non-malicious objects such as web addresses (URLs) and applications.

Not all protections, or detections for that matter, are equal. A product might completely block a URL, which stops the threat before it can even start its intended series of malicious events. Alternatively, the product might allow a web-based exploit to

execute but prevent it from downloading any further code to the target. In another case malware might run on the target for a short while before its behaviour is detected and its code is deleted or moved to a safe 'quarantine' area for future analysis. We take these outcomes into account when attributing points that form final ratings.


For example, a product that completely blocks a threat is rated more highly than one that allows a threat to run for a while before eventually evicting it. Products that allow all malware infections, or that block popular legitimate applications, are penalised heavily.

Scoring a product's response to a potential breach requires a granular method, which we outline in 3. Response Details on page 11.

Total Accuracy Ratings								
Product	Total Accuracy Rating	Total Accuracy (%)	Award					
BlackBerry Protect and Optics	946	95%	ААА					

Total Accuracy Ratings combine protection and false positives.

3. Response Details

In this test security products are exposed to attacks, which comprise multiple stages. The perfect product will detect and protect against all relevant elements of an attack. The term 'relevant' is important, because if early stages of an attack are countered fully there is no need for later stages to be addressed.

In each test case the product can score a maximum of four points for successfully detecting the attack and protecting the system from ill effects. If it fails to act optimally in any number of ways it is penalised, to a maximum extent of -9 (so -5 points in total). The level of penalisation is according to the following rules, which illustrate the compound penalties imposed when a product fails to prevent each of the stages of an attack.

Detection (-0.5)

If the product fails to detect the threat with any degree of useful information, it is penalised by 0.5 points.

Execution (-0.5)

Threats that are allowed to execute generate a penalty of 0.5 points.

Action (-1)

If the attack is permitted to perform one or more actions, remotely controlling the target, then a further penalty of 1 point is imposed.

Privilege escalation (-2)

As the attack impact increases in seriousness, so do the penalties. If the attacker can escalate system privileges then an additional penalty of 2 points is added to the total.

Post escalation action (-1)

New, more powerful and insidious actions are possible with escalated privileges. If these are successful, the product loses one more point.

Lateral movement (-2)

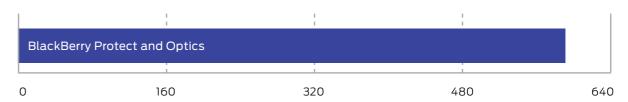
The attacker may attempt to use the target as a launching system to other vulnerable systems. If successful, two more points are deducted from the total.

Lateral action (-2)

If able to perform actions on the new target, the attacker expands his/ her influence on the network and the product loses two more points.

The Protection Rating is calculated by multiplying the resulting values by 4. The weighting system that we've used can be adjusted by readers of this report, according to their own attitude to risk and how much they value different levels of protection. By changing the penalisation levels and the overall protection weighting, it's possible to apply your own individual rating system.

The Total Protection Rating is calculated by multiplying the number of Protected cases by four (the default maximum score), then applying any penalties. Finally, the total is multiplied by four (the weighting value for Protection Ratings) to create the Total Protection Rating.

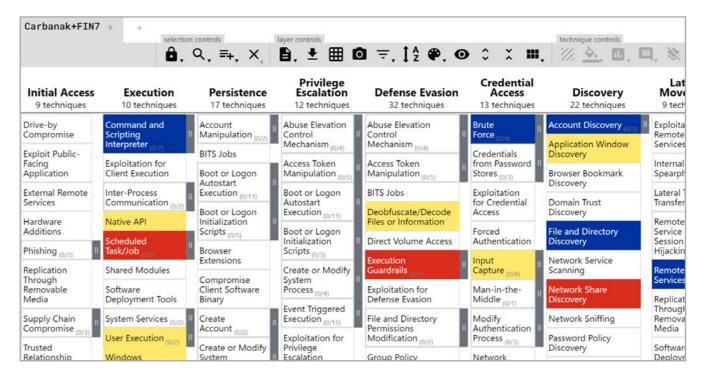

Response Det	Response Details										
Attacker/ APT Group	Number of test cases	Detection	Delivery	Execution	Action	Privilege Escalation	Post Escalation Action	Lateral Movement	Lateral Action	Protected	Penalties
FIN7 & Carbanak	13	13	0	13	0	0	0	0	0	13	10
FIN4	12	12	0	12	0	0	0	0	0	12	2
FIN10	9	9	0	9	0	0	0	0	0	9	7
Silence	6	6	0	6	0	0	0	0	0	6	6
Grand Total	40	40	0	40	0	0	0	0	0	40	25

This data shows how the product handled different stages of each APT group. The columns labelled 'Delivery' through to 'Lateral Action' show how many times an attacker succeeded in achieving those goals. A 'zero' result is ideal.

Protection Accuracy Rating Details									
Attacker/ APT Group	Number of test cases	Protection Score	Protection Rating						
FIN7 & Carbanak	13	13	10	47	188				
FIN4	12	12	2	47	188				
FIN10	9	9	7	32.5	130				
Silence	6	6	6	21	84				
Grand Total	40	40	25	147.5	590				

Different levels of protection, and failure to protect, are used to calculate the Protection Rating.

Protection Accuracy Ratings										
Product	Protection Accuracy Rating	Protection Accuracy Rating (%)								
BlackBerry Protect and Optics	590	92%								


Protection Ratings are weighted to show that how products handle threats can be subtler than just 'win' or 'lose'.

4. Threat Intelligence FIN7

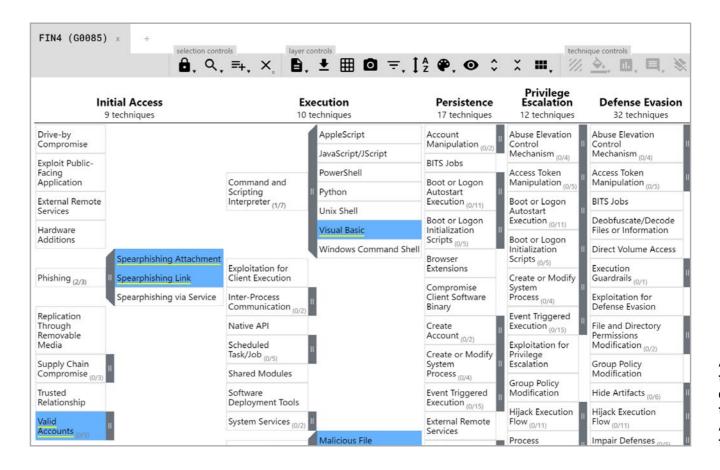
FIN7 used spear phishing attacks targeted at retail, restaurant and hospitality businesses. What appeared to be customer complaints, CVs (resumes) and food orders sent in Word and RTF formatted documents, were actually attacks that hid malicious (VBS) code behind hidden links.

References:

https://attack.mitre.org/groups/G0046/

Attacker techniques documented by the MITRE ATT&CK framework

Example FIN	Example FIN7 Attack									
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration
	Command-Line Interface	Registry Run Keys / Startup Folder		Code Signing	Brute Force	File and Directory Discovery	Remote Desktop Protocol	Data from Local System	Commonly Used Port	Data Compressed
	Service Execution			Disabling Security Tools		Process Discovery		Data Staged	Standard Non- Application Layer Protocol	Data Encrypted
Spearphishing Attachment			Bypass UAC	Masquerading	Credentials from Web Browsers	System Information Discovery			Remote Access Tools	Exfiltration over Command and Control Channel
Attachment		Valid Accounts				Query Registry		Screen Capture		
	User Execution					Permission Groups Discovery				
						System Network Configuration Discovery				
E-mail Link - Fileless Attack	Service Execution	Valid Accounts	Bypass UAC	Disabling Security Tools	Credentials from Web Browsers	System Information Discovery	Remote Desktop Protocol	Screen Capture	Remote Access Tools	Exfiltration over Command and Control Channel


FIN4

This group stole clean Office documents from the target and edited them, embedding malicious macros.

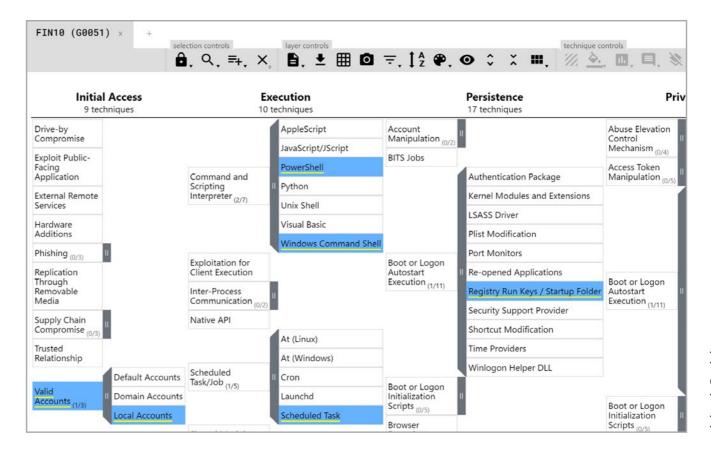
By using correctly formatted documents containing real information, stolen from compromised accounts, the attackers increased the likelihood that recipients would be tricked into opening the documents and allowing their own systems to be compromised.

References:

https://attack.mitre.org/groups/G0085/

Attacker techniques documented by the MITRE ATT&CK framework.

Example FIN4	Attack									
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration
	Scheduled Task				Input Capture	put Capture Account Discovery		Uncommonly used Port	Data Compressed	
Spearphishing Link		Scheduled Task	Valid Accounts	Software Packing		File and Directory Discovery	Pass the Hash	Image Capture	oture Data Encoding	Data Encrypted
	User Execution				Input Prompt	Process Discovery				Exfiltration Over
						System Information Discovery				Command and Control Channel
					Login Admin 1 ***********************************		Admin Serverses &	کے		
E-mail Link - Fileless Attack	User Execution	Scheduled Task	Valid Accounts	Software Packing	Input Prompt	System Information Discovery	Pass the Hash	Image Capture	Data Encoding	Data Encrypted


FIN₁₀

This group of attackers used publicly known tools and techniques to compromise Canadian-based casinos and natural resources companies, with a view to extorting funds by threatening to release stolen data publicly.

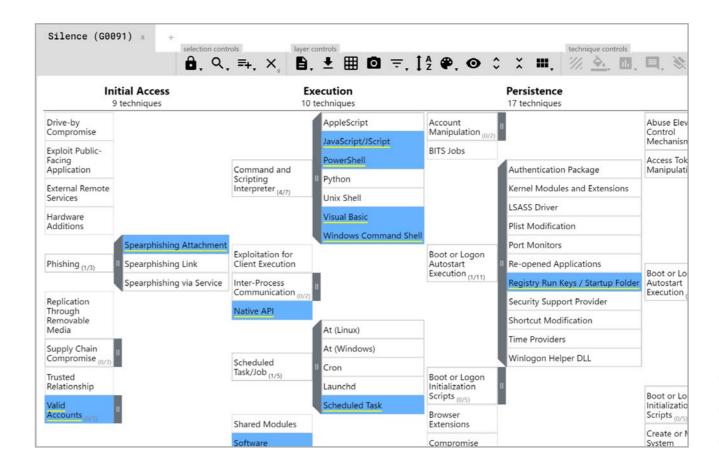
Spear phishing emails combined with Metasploit, PowerShell scripts and the SplinterRat remote access tool were used in combination.

References:

https://attack.mitre.org/groups/G0051/

Attacker techniques documented by the MITRE ATT&CK framework.

Example FIN10 Attack										
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration
	mshta		Scheduled Tasks			Account Discovery				
	Scripting					File and Directory Discovery				
Spearphishing Link	Registry Ru Key /		Scripting		Process Discovery	Remote Desktop	Automated	Commonly Used	Scheduled Transfer	
	User Execution	Start Folder	Valid Accounts			System Information Discovery	Protocol	Collection	Port	
						System Owner/User Discovery				
E mail link	mshta.exe	Podistry Dy Koy/	Walled Walled	Scripting	access seen in research for FIN10.	DOG O	Domesto Dealston		HTTPS	Carbodylad C
E-mail Link - Fileless Attack	mshta	Registry Ru Key/ Start Folder	Valid Accounts	Scripting		Process Discovery	Remote Desktop Protocol	Automated Collection	Commonly Used Port	Scheduled Transfer


Silence

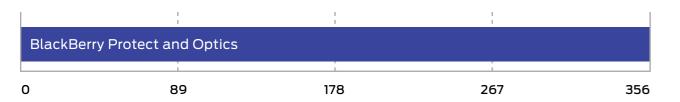
Largely focussed on script-based attacks using .CHM and .LNK files, as well as macros and other exploits, the Silence group targeted banking organisations with malicious Microsoft Office documents.

While targets have been distributed globally, the group has historically paid particular attention to Eastern European countries, with ATMs as specific targets.

References:

https://attack.mitre.org/groups/G0091/

Attacker techniques documented by the MITRE ATT&CK framework.


Example Siler	Example Silence Attack									
Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration
	Scripting		File Deletion Network Share Discovery			Exfiltration Over				
Spearphishing Attachment	Service Execution	Scheduled Task	Scheduled Task	Obfuscated Files or Information		Remote Share	Windows Admin Shares	Video Canturo	Uncommonly Used	Command and Control Channel
	User Execution			Scripting		Discovery				
	<>>				No Credential Access techniques seen in research for Silence.			÷	UDP	#
E-mail Link - Fileless Attack	Scripting	Scheduled Task	Scheduled Task	File Deletion		Network Share Discovery	Windows Admin Shares	Video Capture	Uncommonly Used Port	Exfiltration Over Command and Control Channel

5. Legitimate Software Rating

These ratings indicate how accurately the product classifies legitimate applications and URLs, while also taking into account the interactions that the product has with the user. Ideally a product will either not classify a legitimate object or will classify it as safe. In neither case should it bother the user.

We also take into account the prevalence (popularity) of the applications and websites used in this part of the test, applying stricter penalties for when products misclassify very popular software and sites.

Legitimate Software Ratings									
Product	Legitimate Accuracy Rating	Legitimate Accuracy (%)							
BlackBerry Protect and Optics	356	100%							

Legitimate Software Ratings can indicate how well a vendor has tuned its detection engine.

品SE Labs

INTELLIGENCE-LED TESTING

SE Labs helps advance the effectiveness of computer security through innovative, detailed and intelligence-led testing, run with integrity.

Enterprises

Reports for enterprise-level products supporting businesses when researching, buying and employing security solutions.

Download Now!

Small Businesses

Our product assessments help small businesses secure their assets without the purchasing budgets and manpower available to large corporations **Download Now!**

Consumers

Download free reports on internet security products and find our how you can secure yourself online as effectively as a large company

Download Now!

6. Conclusions

This test exposed BlackBerry Protect and Optics to a diverse set of exploits, file-less attacks and malware attachments, comprising the widest range of threats in any currently available public test.

All of these attack types have been witnessed in real-world attacks over the previous few years. They are representative of a real and present threat to business networks the world over. The threats used in this are similar or identical to those used by the threat groups listed in Hackers vs. Targets on page 9 and 4. Threat Intelligence on pages 13 - 16.

It is important to note that while the test used the same types of attacks, new files were used. This exercised the tested product's abilities to detect and protect against certain approaches to attacking systems rather than simply detecting malicious files that have become well-known over the previous few years. The results are an indicator of potential future performance rather than just a compliance check that the product can detect old attacks.

The product detected and protected fully against all of the threats. In every case the threats were unable to move beyond the earliest stages of the attack chain, meaning that as soon as the target systems were exposed to the threats, the attacks were detected immediately and were blocked from running. This prevented them from causing any damage, including data theft.

The results are strong and not one attack could progress far enough to the point at which the testers could start hacking through the targets. Sometimes products are overly aggressive and detect everything, including threats and legitimate objects. In this test BlackBerry Protect and Optics generated no such false positive results, which is as hoped. BlackBerry Protect and Optics wins a AAA award for its excellent performance.

Appendices APPENDIX A: Terms Used

TERM	MEANING
Compromised	The attack succeeded, resulting in malware running unhindered on the target. In the case of a targeted attack, the attacker was able to take remote control of the system and carry out a variety of tasks without hindrance.
Blocked	The attack was prevented from making any changes to the target.
False positive	When a security product misclassifies a legitimate application or website as being malicious, it generates a 'false positive'.
Neutralised	The exploit or malware payload ran on the target but was subsequently removed.
Complete Remediation	If a security product removes all significant traces of an attack, it has achieved complete remediation.
Target	The test system that is protected by a security product.
Threat	A program or sequence of interactions with the target that is designed to take some level of unauthorised control of that target.
Update	Security vendors provide information to their products in an effort to keep abreast of the latest threats. These updates may be downloaded in bulk as one or more files, or requested individually and live over the internet.

APPENDIX B: FAQs

A full methodology for this test is available from our website.

- The test was conducted between 7th April and 11th May 2021.
- The product was configured according to its vendor's recommendations.
- Targeted attacks were selected and verified by SE Labs.
- Malicious and legitimate data was provided to partner organisations once the test was complete.
- SE Labs conducted this endpoint security testing on physical PCs, not virtual machines.

What is a partner organisation? Can I become one to gain access to the threat data used in your tests?

A Partner organisations benefit from our consultancy services after a test has been run. Partners may gain access to low-level data that can be useful in product improvement initiatives and have permission to use award logos, where appropriate, for marketing purposes. We do not share data on one partner with other partners. We do not partner with organisations that do not engage in our testing.

We are a customer considering buying or changing our endpoint protection and/ or endpoint detection and response (EDR) product. Can you help?

A Yes, we frequently run private testing for organisations that are considering changing their security products. Please contact us at info@selabs.uk for more information.

APPENDIX C: Attack Details

FIN7												
Incident No:	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration	
		Command-Line Interface	New Service	Bypass UAC	Obfuscated Files or Information	Credential Dumping	Account Discovery	Remote File Copy	Data from Local System	Commonly Used Port	Data Compressed	
		Powershell			Modify Registry		File and Directory Discovery			Data Staged	Standard Application Layer Protocol	Data Encrypted
٦.	Spearphishing	Scripting			File Deletion		Process Discovery					
	Attachment	Remote File Copy	Scheduled Task	Valid Accounts	Process Hollowing	Input Capture	Query Registry	Pass the Hash		Standard	Exfiltration over	
		Han Frankina			Virtulisation/		System Information Discovery		Input Capture	Cryptographic Protocol	Command and Control Channel	
		User Execution			Sandbox Evasion		System Owner/User Discovery					
		Command-Line Interface	Registry Run Keys / Startup Folder		Code Signing	Brute Force	File and Directory Discovery		Data from Local System	Commonly Used Port	Data Compressed	
		Service Execution		Bypass UAC	Disabling Security Tools	Credentials from Web Browsers	Process Discovery	Remote Desktop Protocol	Data Staged	Standard Non-Application Layer Protocol	Data Encrypted	
2	Spearphishing Attachment				Masquerading		System Information Discovery		Screen Capture	Remote Access Tools	Exfiltration over Command and Control Channel	
			Valid Accounts				Query Registry					
		User Execution			Process Injection		Permission Groups Discovery					
							System Network Configuration Discovery					
		Command-Line Interface			Deobfuscate Files or Information	Brute Force	File and Directory Discovery	Remote File Copy	Data from Local System	Commonly Used Port	Data Compressed	
		mshta			Execution Guardrails		Process Discovery	Pass the Hash		Connection Proxy	Data Encrypted	
		User Execution					System Information Discovery					
3	Spearphishing Attachment		Bypass UAC		Credential Dumping	Network Share Discovery	Windows Admin Shares	Data Staged	Standard Non-Application Layer Protocol	Exfiltration over Command and Control Channel		
				Software Packing		System Network Configuration Discovery						
							System Owner/User Discovery					
							Account Discovery					

FIN7	FIN7												
Incident No:	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration		
		Command-Line Interface			Indirect Command Execution [NEW]	Hooking	File and Directory Discovery		Data from Local System	Commonly Used Port	Data Compressed		
		Powershell			File Deletion		Process Discovery					Standard Application Layer Protocol	Data Encrypted
	Spearphishing	Scripting	l la akia s	DLL Search Order			System Information Discovery	Windows Management		Cryptographic Protocol Comman			
4	Attachment Component Object Model and Distributed COM Hijacking Execution Guardrails Input Capture Application Windows Discovery Permission Groups Discovery	Model and Distributed	Hooking	Hijacking		Input Capture	Windows	Instrumentation	Data Staged		Exfiltration over Command and Control		
			Cryptographic Frotocot	Channel									
		Execution through API					Network Share Discovery						

FIN4												
Incident No:	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration	
		Scripting				Input Capture	Account Discovery			Commonly Used Port	Automated Exfiltration	
5	Spearphishing Attachment		New Service	Valid Accounts	Scripting		File and Directory Discovery	Remote Desktop Protocol	Email Collection		Exfiltration Over Alternative Protocol	
	Attachment	User Execution				Input Prompt	Process Discovery	Protocot		Standard Application Layer		
							System Information Discovery			Protocol	Data Transfer Size Limits	
		Scheduled Task				Input Capture	Account Discovery		Image Capture		Uncommonly used Port	Data Compressed
6	Spearphishing Link		Scheduled Task	Valid Accounts	Software Packing	Input Prompt	File and Directory Discovery	Pass the Hash		Data Encoding	Data Encrypted	
	LITIK	User Execution					Process Discovery	_			Exfiltration Over Command and Control Channel	
							System Information Discovery					
		Regsvcs/Regasm				Input Capture	Account Discovery	Remote File Copy	Image Capture	Standard Application Layer Protocol	Scheduled Transfer	
7	Spearphishing Attachment	New Service User Execution	New Service	Valid Accounts	Process Injection		File and Directory Discovery			Process Injection		
						Input Prompt	Process Discovery			Commonly Used	Exfiltration Over Alternative Protocol	
							System Information Discovery			Port		
		Scripting				Input Capture				Uncommonly used Port	Data Compressed	
8	Spearphishing Link		Start Up Items	Valid Accounts	Scripting			Remote File Copy	Email Collection		Data Encrypted	
	LIIIK	User Execution				Input Prompt				Web Service	Exfiltration Command and Control Channel	

FIN10											
Incident No:	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration
				Scheduled Tasks			Account Discovery		Data from Local System		
						No credential	File and Directory Discovery			Port Command a Channel	Exfiltration Over
9	Spearphishing Attachment	User Execution	Scheduled Tasks		File Deletion	access seen in research for FIN10.	Process Discovery	Remote File Copy	Data Staged		Command and Control
				Valid Accounts			System Information Discovery				Channet
							System Owner/User Discovery				
		mshta		Scheduled Tasks			Account Discovery				Scheduled Transfer
		Scripting	Registry Ru Key /		Scripting	No credential access seen in	File and Directory Discovery	Remote Desktop			
10	Spearphishing Link	nk					Process Discovery		Automated		
		User Execution	Start Folder	Valid Accounts		research for FIN10.	System Information Discovery	Protocol	Collection		
							System Owner/User Discovery				
		Powershell		Scheduled Tasks	Regsvcs/Regasm		Account Discovery				
		Scripting					File and Directory Discovery				
11	Spearphishing Link	Regsvcs/Regasm	Scheduled Tasks			No credential access seen in	Process Discovery	Remote File Copy	Automated	Commonly Used	Scheduled Transfer
11		User Execution		Valid Accounts	Scripting	research for FIN10.	System Information Discovery		Collection	Port	
		OSEI EXECUTION					System Owner/User Discovery				

Silence	Silence												
Incident No:	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration		
		Command-Line Interface	Scheduled Task	Scheduled Task	Compiled HTML File	No Credential Access techniques seen in research for Silence.	Network Share Discovery		Screen Capture	Commonly Used Port	Exfiltration Over Command and Control Channel		
12	Spearphishing Attachment	Compiled HTML File			File Deletion			Windows Admin Shares					
	Attachment	Execution through API					Remote Share Discovery	Sildles					
		User Execution											
	S	Scripting	Scheduled Task	Scheduled Task	File Deletion	No Credential Access techniques seen in research for Silence.	Network Share Discovery	Windows Admin Shares	Video Capture	Uncommonly Used Port	Exfiltration Over Command and Control Channel		
13	Spearphishing Attachment	Service Execution			Obfuscated Files or Information		Remote Share Discovery						
		User Execution			Scripting		Discovery						

SE Labs Report Disclaimer

- The information contained in this report is subject to change and revision by SE Labs without notice.
- 2. SE Labs is under no obligation to update this report at any time.
- 3. SE Labs believes that the information contained within this report is accurate and reliable at the time of its publication, which can be found at the bottom of the contents page, but SE Labs does not guarantee this in any way.
- 4. All use of and any reliance on this report, or any information contained within this report, is solely at your own risk. SE Labs shall not be liable or responsible for any loss of profit (whether incurred directly or indirectly), any loss of goodwill or business reputation, any loss of data suffered, pure economic loss, cost of procurement of substitute goods or services, or other intangible loss, or any indirect, incidental, special or consequential loss, costs, damages, charges or expenses or exemplary damages arising his report in any way whatsoever.
- The contents of this report does not constitute a recommendation, guarantee, endorsement or otherwise of any of the products listed, mentioned or tested.
- 6. The testing and subsequent results do not guarantee that there are no errors in the products, or that you will achieve the same or similar results. SE Labs does not guarantee in any way that the products will meet your expectations, requirements, specifications or needs.
- Any trade marks, trade names, logos or images used in this report are the trade marks, trade names, logos or images of their respective owners.
- 8. The contents of this report are provided on an "AS IS" basis and accordingly SE Labs does not make any express or implied warranty or representation concerning its accuracy or completeness.